Multiplexed Nucleic Acid Hybridization Assays
Using Single Tb-to-Quantum Dot Pair Distance-Tuning

Xue Qiu\(^a\), Jiajia Guo\(^a\), Zongwen Jin\(^b\), Igor L. Medintz\(^c\), Niko Hildebrandt\(^a\)*

\(^a\)NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, Orsay, France

\(^b\)CAS/CUHK Research Centre for Biosensing and Medical Instrumentation, SIAT/CAS, Shenzhen, P.R. China

\(^c\)Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC, USA

Multiplexed photoluminescence (PL) detection plays an important role in chemical and biological sensing. Different to most frequently developed approaches, which use spectral separation (color multiplexing) of different fluorophores [1-3], we demonstrate the applicability of a single Förster resonance energy transfer (FRET) pair (Tb donor and quantum dot (QD) acceptor) for multiplexed biosensing using multiple time-gated (TG) PL intensity detection windows. We accomplished tunable Tb-QD distances by two strategies: 1) DNA-polyhistidine self-assembly and streptavidin-biotin-DNA interaction on the QD surfaces (Figure 1A); 2) Specific location of the Tb donor by using different lengths of DNA. Both systems used acceptor-sensitization and donor-quenching for quantifying the biomolecular recognition and modification of the donor-acceptor distance for tuning the PL decays. We also show that TG detection of a single Tb-to-QD pair can be used to selectively quantify low nanomolar concentrations of multiple microRNAs in a single sample. TG intensity detection provided extremely low background noise and a quick and simple one-step assay format. Single TG-FRET pair multiplexing can be combined with spectral (color) and spatial (microarrays) resolution, paving the way for biosensing with unprecedented high order multiplexing capabilities.

Fig. 1 Tb-to-QD TG-FRET sensor for the specific quantification of two miRNAs. A: Adaptor DNAs (conjugated to the QD via hexahistidine, His\(_6\), or streptavidin-biotin, sAv-biot) and Tb-conjugated reporter DNAs (I) were mixed with miRNA-20a and 20b (II). This mixture resulted in the formation of stable double-strands and Tb-to-QD FRET, in which the Tb-QD distance for the miRNA-20a-specific double-strand was 9.4 nm and the one for the miRNA-20b-specific double-strand was 7.4 nm (III). B: QD PL decay curves of increasing concentrations (0 to 25 nM from black to green) of miRNA-20a (left) or miRNA-20b (right) at constant concentrations (0.5 nM DNA-QD and 20 nM Tb-DNA) of the miRNA-20a (top) or 20b (bottom) probes. PL intensities only increased for perfectly matching probe/target pairs (20a/20a and 20b/20b), whereas the PL intensities remained at background levels for unmatched combinations (20a/20b and 20b/20a). The distinct decays could be used to specifically quantify the different miRNAs from a single sample by simple detection of PL intensities in two distinct time-windows (1, 2) after the excitation pulse and a mathematical correlation of these two windows.

