## Water Resistant CsPbX<sub>3</sub> Nanocrysals Coated by Polyhedral Oligomeric Silsesquioxane and Their Use in Light-emitting Devices

<u>He Huang</u>, <sup>1</sup> Bingkun Chen, <sup>1, 2</sup> Zhenguang Wang, <sup>1</sup> Andrei S. Susha, <sup>1</sup> Haizheng Zhong, <sup>2</sup> and Andrey L. Rogach <sup>1</sup>

- Department of Physics and Materials Science and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong;
- 2. Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China.

Last few years have seen a burst of publications on the perovskites in the form of colloidal nanocrystals (NCs). All-inorganic CsPbX<sub>3</sub> NCs, which exhibit both compositional and size variability of their bandgaps over the whole visible spectral range have been reported [1].

We demonstrate advantageous properties of CsPbX<sub>3</sub> (X=Br or I) perovskite NCs coated by Polyhedral Oligomeric Silsesquioxane (POSS): a high resistivity to water and the prevention of mixed perovskite NC powders of different halide composition from anion exchange both in water and in solid state [2]. The strong emission and the spectral shape of the POSS-coated perovskite NCs were fully preserved in powdered state, which allowed us to use them as solid state luminophores for fabrication of all-perovskite down-conversion white light-emitting devices (LEDs) [2]. In order to fabricate all-perovskite based white LEDs, green emissive CsPbBr<sub>3</sub> and red emissive CsPb(Br/I)<sub>3</sub> NCs were dispersed in a silicone resin, following by deposition onto a blue-emitting LED chip.

The beneficial role of the insulating material POSS as a solution additive or an additional hole-blocking layer to enhance the performance of electroluminescent green LEDs based on CsPbBr<sub>3</sub> perovskite nanocrystals has also been demonstrated [3]. POSS improved the surface coverage and the morphological features of the films deposited either from supernatant or suspension of perovskite nanocrystals. The POSS film acted as a hole-blocking layer between the perovskite nanocrystals and TPBi, keeping both electrons and holes located within the active layer for an efficient recombination.

- 1) L. Protesescu et al., Nano Lett., 2015, 15, 3692-3696.
- 2) H. Huang et al., Chem. Sci., 2016, 7, 5699-5703.
- 3) H. Huang et al., J. Phys. Chem. Lett. 2016, 7, 4398-4404